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F!g. 1.~ Rotary-vane attenuator represented by cascade of three networks. Transitions are three-ports while the
circular section is a four-Dort. Absorbkw vanes lie in horizontal pkme of transitions and in the 2-4 plane of
circular section.
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the phase of &~ was not measured, it is be-

lieved unlikely that it would not similarly

agree with theory.
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Fig.~2. Measured and calculated magnitudes of reflection coefficients of FXR X164A X-band attenuator.

Temperature Dependence of Com-

posite Coaxial Resonators
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Fig. 3. Measured and calculated magnitudes of reflection coefficients of FXR K164AF K-band:attenuator.

TABLE I

ATTENUATOR CONSTANTS

I FXR X164A X-Band Attenuator I FXR K164AF K-Band Attenuator

S,l S** s,, S22

A<. 0.0412 0.0439 0.0436 0.0520

B;, 0.0560 e-j.le 0.0679 e-?z 66 0.0580 e-is. 75 0.0334 e-~g 46

c<, 0.0125 e-~A 04 0.00927 e-~6.0E 0.0135 e-~$lo 0.0106 e-?l 88

Under certain circumstances, it is neces-
sary to construct a composite coaxial resona-
tor using inner and outer conductors having
different thermal expansion coefficients. This
may be required for mechanical reasons or as
a means of adjusting the resonator tempera-
ture stability. This correspondence describes
an analysis of such a resonator as well as
some experimental results.

The resonant frequency of a quarter-wave-
length capacitively loaded line is given by

10–12

— = tan 2TL/k (1)
alCz

where

u = resonant frequency, rad/s
C= loading capacitance, pF
Z= impedance of coaxial line, ohms
L= length of inner conductor, cm
A = wavelength at resonance, cm.

Equation (1) is transcendental and can be
solved by graphical means] if the loading ca-
pacitance is known, by letting

and

A.
Y,, = —

27#cz
(3)
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e = 8.55.5 pF/cm

v = 3 X 10 IOcm/s.

Plotting Y,l and Y,~versus ~yieldstwofami-
lies ofcurves (Fig. I)withsimultaneous solu-
tions at points of intersection.

A section view of a quarter-wavelength
resonator is shown in Fig. 2. Theloadingca-
pacitances are indicated. In many cases, the
resonator is designed such that the parallel-
plate capacitance CpPis small; consequently,
the end-wall fringing capacitance Cj. is neg-
ligible. Under these conditions, the side-wall
fringing capacitance Cf8 is significant in all
cases, andisthe predominant factor in devia-
tions from exact quarter-wavelength opera-
tion. Consequently, only this capacitance will
be considered in the analysis.

It is possible to obtain an estimate of the
side-wall fringing capacitance by adopting
results developed for a slightly different appli-
cation.2s4 The longitudinal section of the
resonator given in Fig. 2 (neglecting the end
wall)is seen to be similar to across-sectional
view of a rectangular bar between ground
planes as shown in the inset in Fig. 3. This
gives the fringing capacitance per unit length.
To adapt this to the coaxial situation, the cir-
cumference of the inner conductor becomes
the length along which fringing occurs.

For the composite resonator, where the
inner and outer conductor are constructed
from different materials, the loading capaci-
tance temperature dependence, in general, is
a complex function of both material expan-
sions. The fringing capacitance of Fig. 3 is
given analytically as

Cf.1= % [2(tJ in (t, +1)

–(t, –l)ln(t,’ –l)]2ra, pF/cm (4)

where

L
t,=—

1 – a/b

c. = relative permittivity.

After subjection to a temperature change AT,
the new fringing capacitance CJ,2 is given as

C’/*, = % [2(Q 1. (h + 1)

— (t, – 1) in (t;’ – l)]27ra

.(1 + a(a)AT), pF/cm (5)

where

1
t, =

~ _ a(l + ~(a) AT)

b(l + a(b) AT)
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F1g.2. Coaxial re60nator loadaIg capacitances.
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Fig.3. Normalized fringing capacitance (after Cohn, Gets1nger).

a(a) = expansion coefficient of inner

conductor

a(b) = expansion coefficient of outer

conductor.

This is a complex dependence ontheexpan-
sion of both materials. Note, however, that
when, a(a)= a(b), the equation reduces to a
simple dependence on (1 +aAT).

For the ideal case of an open-circuited
resonator, the characteristic impedance of the
coaxial structure has no effect on the resonant
wavelength. Assoonas theline isloaded, the
impedance enters the determination of reso-
nance as given by (l).

At the initial temperature, the impedance
of the coaxial line is given by

2, = 601nb/a (ohms). (6)

At a temperature differing by AT, the new im-
pedance is given by

Z, = 60 In
b(l + cz(b)AT)

(ohms). (7)
a(l + a(a) A!!’)

The change in impedance as a function of
temperature can be shown to be

Z = 60(a(b) – a(a)) AT. (8)

The resonance condition for a loaded quar-
ter-wavelength line has been given as
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Fig. 4. Stability versus loading for composite coaxial resonator. Brass outer con-

ductor for various inner conductor expansions: b/a=3.6 a=O.9 cm. Outer con-
ductor expansion: 2 X10-S.
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Fig. 6. Stability versus loading for composite coaxial resonator. Brass outer con-
ductor for various inner conductor expansions: b/a=9.Oa=O.36 cm. Outer con-
ductor expansion =2 X 10-3.
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F]g. 5. Stability versus loading for composite coaxial resonator. Brass outer con.
ductor for various inner conductor expansions: b/a=3.6 a=O.9 cm. Outer con.

ductor expansion =2 XIO-%
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Fig. 7. Stability versus loading for composite coaxial resonator. Brass outer con.
ductorfor various inner conductor expansions: b/a=9.O a= 0.36 cm. Outer con-
ductor expansion =2 X 10-S.
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xl
— = tan 2uLI/hI.
kC,Z

(9)

For a homogeneous resonator constructed
from a single material, the capacitance C,
changes linearly with temperature while Z
remains constant.

[’+%%=’+% ’10)
The subscripts 1 and 2 designate the initial
and final temperatures, respectively. The solu-
tion to (10) occurs when

AX
— aAT.

xl –
(11)

Consider the case of a composite resona-
tor constructed from two different materials,
say a brass outer conductor and a low-expan-
sion inner conductor. After a change in tem-
perature, AT, the resonance condition is de-
scribed by

tan [27r~ ~ (1 + a(a) A2’)]

= Y,,; : ; (12)

where Cl and C, are given by (4) and (5), re-
spectively, and ZI and Zz are given by (6) and
(7). This equation cannot be solved as simply
as (10), due to the complex temperature de-
pendence of C, and the presence of the im-
pedance term on the right-hand side of the
equation.

This equation was solved, using Newton’s
approximation method, on a digital computer
for two conditions. These conditions are for a
b/a ratio of 3.6 to 1 with a =0.9 cm, and a b/a
ratio of 9.0 to 1 with a = 0.36 cm. The results
of these solutions are plotted in Figs. 4–7 for
a brass outer conductor and various expan-
sion inner conductors for different initial
loading factors. It is evident from the curves
that the resonator stability deteriorates
rapidly for even slight loading of a resonator
with a very low-expansion center conductor.
For higher-expansion center conductors, the
effect is decreased. For an inner-conductor
expansion of 2 parts in I@ equal to the brass
outer conductor, the stability is equal to the
material expansion and independent of the
loading as it should be.

EXAMPLE

A composite coaxial resonator was con-
structed with a low-expansion center conduc-
tor and a brass outer conductor. The diameter
ratio was 3.6 to 1 and the radius of the inner
conductor was 0.9 cm. At room temperature,
resonance occurred at 1.385 GHz compared
to an unloaded length corresponding to 1.75
GHz. This is a loading factor [Jh of 0.198.
Between 25°C and 70”C, the inner conductor
had a measured expansion of about 5 parts in
107. From Fig. 5, this corresponds to a sta-
bility Al/k of 2.2 parts in 108. The measured
stability of the resonator over this range is
3.8 parts in 10’. This is good correlation with
the small discrepancy possibly due to mea-
surement inaccuracy or additional external
influences on the resonator.
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Isolation of Lossy Transmission

Line Hybrid Circuits

I. INTRODUCTION

With the advent of integrated microwave

circuit techniques, use of Iossy transmission

lines to achieve miniaturization can seriously

affect circuit performance. A frequently used

performance characteristic of hybrid circuits

is the isolation between conjugate ports. Such
isolation is normally limited to maximum
values of 40 dB to 50 dB due to incidental
mismatch of terminations and capabilities of
test equipment. When lossy transmission lines
are employed to realize the hybrid circuits, an
additional constraint is placed upon the peak
isolation that can be achieved. In this cor-
respondence, the theoretical isolations of 10SSY
hybrids will be determined at their design cen-
ter frequencies. Two different hybrid circuits
will be considered: the square hybrid and the
“rat race” hybrid ring. The preferred method
of analysis of symmetrical four-port networks
will be used herein.1

To analyze the lossy hybrids, one must use
the complex propagation constant y, where
~ = ~ +j~. “fhe attenuation per unit length in

nepers per unit length is ~, while B is the
phase shift per unit length in radians per unit
length. Three trigonometric identities will be
used:2.3

()tanh ~ =
cosh (vL) — 1

(1)
sinh (YL)

sinh (7L) = sinh (aL +j~~) = sinh aL cos BL

+j cosh aL sin BL (2)

cosh (7L) = cosh (CIL +J3L) = cosh aL COS BL

+j sinh CIL sin BL. (3)

For a quarter-wave transmission line of small
dissipation, L= A/4, sinh CILELYL, cosh aL~l,
sin PLE1, and cos BLgO:

Then

sinh (YL) % j I
cosh (7L) s j d. ~

()

(4)

tanh ~ =cA+jt
J

For a three-quarter-wave transmission line of
small dissipation, 3L = 3h/4, sinh 3aL~3aL,
cosh 3aL~l, sin 3BL= – 1, and cos 3BL=0.
Then

sinh (37L) ~ — j’
)

cosh (37L) s% — j3aL ‘

371.

() 1“

(5)

tanh — s3aL–j
2

II. SQUARE HYBRID

The square hybrid (see Fig. 1) uses four
quarter-wave transmission lines. The ABCD
matrix for this hybrid can be found for both
the even (M+ +) and the odd (M+ –)
modes:
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Fig. 1. Square hybrid.

x [
cosh (72L) ~z sinh (YZL) ]

(6)

where

w= propagation constant per unit length
of transmission lines connecting ports
1 and 2, and ports 4 and 3, --

y+t are admittances of shunt stubs for
even and odd modes.

For the even mode: (shunt stubs are open-
circuited)

Y ()++ = Y, tanh ~ (7)

where

m = propagation constant per unit length
of transmission lines connecting ports
1 and 4, and ports 2 and 3.

Letting Y,= 1, and substituting (4) into (7)

Y++ = LY,L + j.

For the odd mode: (shunt stubs
circuited)

Y,
Y+- = —— .

()tanh @
2

(8)

are short-

(9)

Letting Y,= 1 and substituting (4) into (9)

1
Y+- = —

CWL — j

CIIL + j = (a,L)2 + ~ . (10)

For small dissipation, (~1 L)2<<1 then

Y+. GCiIL -j. (11)

Substituting (4), (8), and (11) into (6), it can
be shown that

M~h = j
[

1

(IIL ~ j
RI ‘[: i]

1 0
1‘[a,LAj 1 “

Performing the matrix multiplications in (12)
and disregarding all second-order terms in-
volving CUL and c&:


