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Fig. 1. JJRotary-vane attenuator represented by cascade of three networks. Transitions are three-ports while the
circular section is a four-port. Absorbing vanes lie in horizontal plane of transitions and in the 2-4 plane of

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

N
! |

(@)

circular section.

Fig.f2. Measured and calculated magnitudes of reflection coefficients of FXR X164A X-band attenuator.

Fig. 3. Measured and calculated magnitudes of reflection coefficients of FXR K164AF K-band_attenuator.
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ATTENUATOR CONSTANTS
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the phase of .S;; was not measured, it is be-

lieved unlikely that it would not similarly
agree with theory.

J. D. HoLM

D. L. JounsoN

K. S. CHAMPLIN

Dept. of Elec. Engrg.

University of Minnesota

Minneapolis, Minn.
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Temperature Dependence of Com-
posite Coaxial Resonators

Under certain circumstances, it is neces-
sary to construct a composite coaxial resona-
tor vsing inner and outer conductors having
different thermal expansion coefficients. This
may be required for mechanical reasons or as
a means of adjusting the resonator tempera-
ture stability. This correspondence describes
an analysis of such a resonator as well as
some experimental results.

The resonant frequency of a quarter-wave-
length capacitively loaded line is given by

1012

— = L
07 tan 2aL /N 1)

where

w=resonant frequency, rad/s

C =loading capacitance, pF

Z =impedance of coaxial line, ohms
L=length of inner conductor, cm

A =wavelength at resonance, cm.

Equation (1) is transcendental and can be
solved by graphical means! if the loading ca-
pacitance is known, by letting

Y11 = tan 27L/A @)
and
Ne
Yie = ——— 3
Y omCz ®

Manuscript received June 16 1966; revised Septem-
ber 8, 1966.

1 G. K. Megla, Dezimeterwellentechnik. Berlin: Veb
Verlag Technik, 1961, p. 189.
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where
e = 833.5 pF/cm
v =3 X 101% cm/s.

Plotting Yy; and Y;» versus X yields two fami-
lies of curves (Fig. 1) with simultaneous solu-
tions at points of intersection.

A section view of a quarter-wavelength
resonator is shown in Fig. 2. The loading ca-
pacitances are indicated. In many cases, the
resonator is designed such that the parallel-
plate capacitance C,, is small; consequently,
the end-wall fringing capacitance C;, is neg-
ligible. Under these conditions, the side-wall
fringing capacitance Cy. is significant in all
cases, and is the predominant factor in devia-
tions from exact quarter-wavelength opera-
tion. Consequently, only this capacitance will
be considered in the analysis.

It is possible to obtain an estimate of the
side-wall fringing capacitance by adopting
results developed for a slightly different appli-
cation.234 The longitudinal section of the
resonator given in Fig. 2 (neglecting the end
wall) is seen to be similar to a cross-sectional
view of a rectangular bar between ground
planes as shown in the inset in Fig. 3. This
gives the fringing capacitance per unit length.
To adapt this to the coaxial situation, the cir-
cumference of the inner conductor becomes
the length along which fringing occurs.

For the composite resonator, where the
inner and outer conductor are constructed
from different materials, the loading capaci-
tance temperature dependence, in general, is
a complex function of both material expan-
sions, The fringing capacitance of Fig. 3 is
given analytically as

0.0885¢,
Cra = —— [2)In @ + 1)
— (hh — Dn ¢2 — 1)]2za, pF/cm  (4)
where
1
= ——
1—a/b

¢ = relative permittivity.

After subjection to a temperature change AT,
the new fringing capacitance Cy.» is given as

0.0885¢,
fo = [2(¢2) In (t + 1)
bt (tz - 1) In (t22 o 1)]21{'6!
(1 4+ a(@)AT), pF/em 6)]
where

1
a(l + a(@)AT)
b(1 + a(®)AT)

t2=

1
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1962.

3 G. L. Matthaei, L. Young, and E. M. T. Jones,
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190.
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afa) = expansion coefficient of inner
conductor
a(b) = expansion coefficient of outer

conductor.

This is a complex dependence on the expan-
sion of both materials. Note, however, that
when, a(a)=a(b), the equation reduces to a
simple dependence on (14aAT).

For the ideal case of an open-circuited
resonator, the characteristic impedance of the
coaxial structure has no effect on the resonant
wavelength. As soon as the line is loaded, the
impedance enters the determination of reso-
nance as given by (1).

At the initial temperature, the impedance
of the coaxial line is given by

Zi = 60In b/a (ohms). ®)

At a temperature differing by AT, the new im-
pedance is given by

b(1 4+ «(®d)AT)
a(l + a(a)AT)

The change in impedance as a function of
temperature can be shown to be

Z = 60(a(d) — a(a))AT. (®)

The resonance condition for a loaded quar-
ter-wavelength line has been given as

Zs=160In (ohms). (7)
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—— = tan 2z Ly /N 9
IcC,Z /M. ®
For a homogeneous resonator constructed
from a single material, the capacitance C;
changes linearly with temperature while Z
remains constant.
Neo/Ny Ae/M

I:t Owly _
e 1 04ary "M (i4al)

The subscripts 1 and 2 designate the initial
and final temperatures, respectively. The solu-
tion to (10) occurs when

AN

— = aAT.
1

(10)

an

Consider the case of a composite resona-
tor constructed from two different materials,
say a brass outer conductor and a low-expan-
sion inner conductor. After a change in tem-
perature, AT, the resonance condition is de-
scribed by

tan [27r i M (1 + a(a)AT)]

BRGNS
where C; and C. are given by (4) and (5), re-
spectively, and Z; and Z, are given by (6) and
(7). This equation cannot be solved as simply
as (10), due to the complex temperature de-
pendence of C. and the presence of the im-
pedance term on the right-hand side of the
equation.

This equation was solved, using Newton’s
approximation method, on a digital computer
for two conditions. These conditions are for a
b/aratio of 3.6 to 1 witha=0.9cm,and a b/a
ratio of 9.0 to 1 with a=0.36 cm. The results
of these solutions are plotted in Figs. 4-7 for
a brass outer conductor and various expan-
sion inner conductors for different initial
loading factors. It is evident from the curves
that the resonator stability deteriorates
rapidly for even slight loading of a resonator
with a very low-expansion center conductor.
For higher-expansion center conductors, the
effect is decreased. For an inner-conductor
expansion of 2 parts in 105 equal to the brass
outer conductor, the stability is equal to the
material expansion and independent of the
loading as it should be.

(12)

ExXAMPLE

A composite coaxial resonator was con-
structed with a low-expansion center conduc-
tor and a brass outer conductor. The diameter
ratio was 3.6 to 1 and the radius of the inner
conductor was 0.9 cm. At room temperature,
resonance occurred at 1.385 GHz compared
to an unloaded length corresponding to 1.75
GHz. This is a loading factor /4/\ of 0.198.
Between 25°C and 70°C, the inner conductor
had a measured expansion of about 5 parts in
107. From Fig, 5, this corresponds to a sta-
bility AN/A of 2.2 parts in 10% The measured
stability of the resonator over this range is
3.8 parts in 108, This is good correlation with
the small discrepancy possibly due to mea-
surement inaccuracy or additional external
influences on the resonator.

L. C. GUNDERSON
Electronic Research Lab.
Corning Glass Works
Raleigh, N. C.
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Isolation of Lossy Transmission
Line Hybrid Circuits

1. INTRODUCTION

With the advent of integrated microwave
circuit techniques, use of lossy transmission
lines to achieve miniaturization can seriously
affect circuit performance. A frequently used
performance characteristic of hybrid circuits
is the isolation between conjugate ports. Such
isolation is normally limited to maximum
values of 40 dB to 50 dB due to incidental
mismatch of terminations and capabilities of
test equipment. When lossy transmission lines
are employed to realize the hybrid circuits, an
additional constraint is placed upon the peak
isolation that can be achieved. In this cor-
respondence, the theoretical isolations of lossy
hybrids will be determined at their design cen-
ter frequencies. Two different hybrid circuits
will be considered: the square hybrid and the
“rat race” hybrid ring. The preferred method
of analysis of symmetrical four-port networks
will be used herein.!

To analyze the lossy hybrids, one must use
the complex propagation constant -y, where
y=a-jB. The attenuation per unit length in
nepers per unit length is «, while g is the
phase shift per unit length in radians per unit
length. Three trigonometric identities will be
used:23

vL\ cosh ('yL) —1
fanh ( ) sinh (7L) @
sinh (yL)=sinh (L +4jBL)=sinh «L cos BL
+j cosh oL sin BL 2)
cosh (vL)=cosh (aL+jBL) = cosh aL cos BL
~+jsinh oL sin BL. 3)

For a quarter-wave transmission line of small
dissipation, L =\/4, sinh aL=«L, cosh al.2=1,
sin BL=1, and cos BL=20:

Then

sinh (+L) 27 l
L.
|

cosh (yL.) =2 j L @

tanh (——) > al —I-]J

For a three-quarter-wave transmission line of
small dissipation, 3L =3)/4, sinh 3aL=3aL,
cosh 3aL=41, sin 3gL>—1, and cos 38L=0.
Then
sinh 3yL) = —j
cosh (3vL) = — j3aL

tanh( )"’3 L—]

II. SQUARE HYBRID

The square hybrid (see Fig. 1) uses four
quarter-wave transmission lines. The ABCD
matrix for this hybrid can be found for both
the even (M-+-) and the odd (M4--)
modes:

6
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10
Moy = [ ]
=y, 1

1
" |:cosh (nl)  sinh (nL) |
/2 sinh (v:L) cosh (y.L)
10
[y, 1] ®
where

e =propagation constant per unit length
of transmission lines connecting ports
1 and 2, and ports 4 and 3,

v+ are admittances of shunt stubs for
even and odd modes.

For the even mode: (shunt stubs are open-
circuited)

L
Y., = Yotanh (71 ) (7

where

vyi=propagation constant per unit length
of transmission lines connecting ports
1 and 4, and ports 2 and 3.

Letting Yo=1, and substituting (4) into (7)
Yoy = ail +34. (8)

For the odd mode: (shunt stubs are short-
circuited)

Vo= ——

©)
L

tanh (71 )

Letting Yo=1 and substituting (4) into (9)

1 o, —j
= = . 10
Y. artl +j ()41 (10)

For small dissipation, (eu L?<1 then
Y, i_ 2oL —3j. 11)

Substituting (4), (8), and (11) into (6), it can
be shown that

1
0 L —
=i, x| )
! J V2 sl
1 0
. (12)
XI:OQL i] 1

Performing the matrix multiplications in (12)
and disregarding all second-order terms in-
volving aullL and al.:



